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Abstract

The diffusive characteristics of two upwind scheines, multi-dimensional fluctuation split-

ting and locally one-dimensional finite volume, are compared for scalar advection-diffusion

problems. Algorithms for the two schemes are developed for node-based data represen-

tation oil median-dual meshes associated with unstructured triangulations in two spatial

dimensions. Four model equations are considered: linear advection, non-linear advection,

diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the

two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency

comparisons. Both the stability of compressive limiters and the amount of artificial diffusion

generated by the schemes is found to be grid-orientation dependent, with the fluctuation

splitting scheme producing less artificial diffusion than the finite volume scheme. Conver-

gence rates are compared for the combined advection-diffusion problem, with a speedup of

2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. How-

ever, accurate solutions to problems with small diffusion coefficients can be achieved on

coarser meshes using fluctuation splitting rather than finite volume, so that when comparing

convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over

finite volmne.
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Artificial dissipation--fluctuation splitting

Artificial dissipation--finite volume

Element advective fluctuation

Fluctuation components

Limited fluctuations

Viscous fluctuation

Limiter function
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Introduction

Upwind discretizations for advection equations typically introduce artificial numerical

dissipation into the solution. When combined advection-diffusion problems are considered,
this dissipation introduced in the discretization of the advection terms should be less than

the true physical diffusion. To this end the diffusive characteristics of upwind schemes are

investigated and their performance in resolving solutions to advection-diffusion prot)lems

with small diffusion coefficients is analyzed.

Two node-based, median-dual methods for modeling convective fluxes are considered.

The first is a traditional locally one-dimensional approximate Riemann solver finite volume

(FV) scheme. 1 Locally one-dimensional schemes applied on multidimensional domains are

known to introduce excess dissipation when discontinuities are not aligned with the mesh. 2

The second method is the NNL 3 fluctuation splitting (FS) scheme, also referred to in

the literature as a residual distribution scheme. FS has a more-compact stencil than FV for

second-order formulations and exhibits "zero cross-diSusion"t in a grid-aligned condition.

Both of these attributes should lead to less introduced dissipation as compared with FV.

The sensitivity of FS to grid orientation and res_lting production of cross-diffusion is

investigated in the present report. The use of compressive limiter functions is also tested

with both algorithms. Local timesteps based on posi|ivity arguments are implemented for

both first- and second-order discretizations of the imp!icit matrix.

Formulation of FS schemes for diffusion problems is a recent research area. 4,5 The present

study seeks to quantit_ the relative merits of using _ low-diffusion advection operator to

resolve advection-diffusion problems with small diffu, ion coefficients. Lessons learned on

these problems will guide the development of computer :odes for solving compressible viscous

fluid dynamic problems. A similar approach for central difference schemes with explicit

numerical dissipation has recently been taken by Efraimsson. 6

t "Zero cross diffusion" refers to the practice of adding artificial diffusion terms in the streamwise direction

only, as opposed to adding artificial dissipation in both the stre:_mwise and cross-stream directions.



Governing Equations

Tile non-linear advection-diffusion equation,

u, + V. f = V. (uVu) (1)

is cast as a hypert)olic conservation law, to which steady-state solutions are sought.

Finite Volume

In FV form, using the divergence theorem Eqn. 1 t)ecomes,

where Q is the median dual at)out node i and F is the t)oundary of _. Using mass lumping

to the nodes, similar to an explicit finite element treatment, 8 the temporal evolution is

evaluated on a time-invariant mesh as,

u, dQ = Si-_ -+ -- - 'u_) (3)
, T

The discretization of the convective flux, k_, is performed using Barth's implementation 1

of the upwind, locally one-dimensional, approximate Riemann solver of Roe. 9

f aC_?,g

where the artificial dissipation provides the upwinding,

= _ I.i,*_ + bGl(uo, . - _,.,) (5)

with f_, = i_i + h.vj. Out and in refer to states on the outside and inside of _ at the face. A

and B are the flux ,]acobians,

OF (1) 0F (2)

A--0_ ' B- 0u (6)

and (.4,/3) represent their conservative linearizations at the cell face. 9

Piecewise linear reconstruction from the nodal unknowns to the cell faces as,

u:_c_ = u,: + _',V'. • _" (7)

provides second-order spatial accuracy in smoothly-varying regions of the solution. Median-

dual gradients of the dependent variable, X7u, are obtained from the unweighted least squares

procedure outlined by' Barth. Following Bruner and Walters, 14 the limiter is supplied an

argument equal to half the argument Barth uses, namely,

'_) = t/) (2, (8)
?lmin / raax



where u ''i'O'_'_ is tile minimum (resp. maximum) of ui and all distance-one neighbors. The

most restrietiv(, limiting from choosing the minimum or maximum is used.

In casting the limiter argument in this form, Bvuner equates the Barth limiter with

Superl)ee, for a limiter argument less than or equal to one. The present authors incorrectly

identified the Barth linfiting with the non-symmetri( Chakravarthy and Osher la limiter in

Ref. 7. The Barth limiting is non-symmetric, but takes the form,

@ P_<O
_/' = if 0 _. _ <

q

q

(9)

for tile limiter cast as Eqn. 8.

Two methods for evaluating the diffusion term are incorporated into FV. Tile more

compact of the two, the finite eleInent discretization, is discussed in the following section.

The less-compact diffusion formula is obtained by discretizing the last term of Eqn. 2, in a

lnanner similar to Eqn. 4,

_i P (Vui,, + VUo,_t). fi AF (10)
face8

The diffusion coefficient is averaged over the length of the face. The gradients from Eqn. 7

are not limited before averaging at the control-volume faces in Eqn. 10, as suggested by
Anderson and Bonhaus. t°

Fluctuation Splitting

Tile NNL FS scheme is presented as a slight re-interpretation of tile work of Sidilkover and

Roe. a Tile current interpretation is as a volume integral over triangular elements, without

recourse to tile divergence theorem. Tile discretized equations, however, are identical.

Integrating Eqn. 1 over an eleinent, where f_ is nox tile area of tile triangular element,

For linear variation of the dependent variable over the element, tile temporal evolution is,

(711, + _- ) (12)

f_

ut d_ = l_'/it = _ u2, u3,

where u l, 'u2, and Ua correspond to the three nodes defining element fL

Defining local curvilinear coordinates, { and r/, parallel to sides 1-2 and 2--3, respectively

(Fig. 1), the divergence of the convective flux can be written,

V-F=F_ ')+F_ 2)- I @'2"*_,,-h,'Z) (13)
J-I

Defining the scaled inward normal, n = -hh,, where h is a mesh edge length, the divergence

(Eqn. 13) be('omes,

l (-h12n2"r_+h23nl'lW,_) (14)v.P= 2--fi



If F is linear or quadratic in u, then for a linear variation of u over the element,

V • fi df_ = a'A21'u +/3Aa2U

where tile difference operator is defined A2_u = we - Ul and the advection speeds are,

1 - /_), fl=la: = -_(n2_A + n2_ _(n,x,4 + nl./))

.4 and/_ are now the conservatiw, linearizations over the triangular element. 11

The advective fluctuation can be defined,

,=-£V-Fd_

The fluctuation can be split,

where,

(15)

(16)

(17)

with,

_=0{+_" (18)

0 _ = --_'A21tt, 0 n = --3/ka2U

Following SidilkoveP 2 the fluctuation is limited to achieve a second-order scheme,

O_" = O_ + c)'{J(Q) = O_ (1 _) )

&,l' = 0,1 __ O"_/,(Q) = O'J (1 - _J_(Q))

19)

(20)

(21)

cO_ (22)

Upwinding is achieved through the introduction of the artificial dissipation terms,

¢_ = sign(a)0 C, $" = sign(3)0 '/" (23)

Combining Eqn. 12 with a distribution scheme for Eqn. 17 and sumlning over all elements,

the contributions to nodal time derivatives can be written in the form,

1

Sl_/I, +--- _(0_* - 6 _) --}-COG

s2_,_,+-- _(0_"+ ) + 5( - 6") + coe

$3_/3, _ 2(Or/" _+_ 6r/) + COE (24)



oi"in a morecorot)actform,

1 [i(3 - i)(O c + (-1)i_ ¢) + (-4 + 5i -/2)(0 "" - (-1)i0'_)] + COE (25)

where COE stands for contributions from other elements containing these nodes.

A finite element treatment, sinlilar to Tomaich, 4 is employed to obtain the diffusive

fluctuation,

,,, v. (26)

Assuming piecewise-linear data and an element-averaged diffusion coefficient leads to a dif-

fusive fluctuation of zero for the triangular element. Introducing the linear nodal shape

flmctions Ji, such that _-_i_10i = 1, the elemental diffusive fluctuation can be expressed

i=l 0_ = O, where

0v, = ./_ 0_V. (OVui dl_ (27)

Integrating by parts,

Ov_=frOiOVu'fidF-f#Vu'VvOidQ (28)

The boundary integral in Eqn. 28 will cancel on summing contributions for interior nodes.

The remaining volume integral can be evaluated anal) tically,

3
- #

0,,_ - uVu'2 ni+l -- 4--_ Z ujnj+l " ni+l (29)
j=l

Distributing this diffusive fluctuation to the nodes and keeping only tile larger of the I)hysical

or artificial dissipation leads to the update formula,

SI _tlt _ _ -[- max - ,0_ + COE

0C+0 _" ((4_-_))$2u2, _ 2 + max 2 ,0_,2 + COE

_3'_3t_--07'*--2 + Inax (_ , Ov3)+_'OE
(30)

Boundary Condb;ions

Explicit Dirichlet inflow boundary conditions are ,_'mployed. Advective outfow bound-

aries are treated for free convection through tile boundary nodes, allowing boundary nodes

to be handled in the same manner as interior nodes. For the diffusion terms a Neumann

outflow I)oundary is applied with zero gradient, achieved by setting the boundary integral
in Eqn. 28 to zero.
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Limiter functions

Minmod, van Albada, 15 Superbee, and 7 j6 symmetric limiters are utilized for FV (Eqn. 7)

and FS (Eqns. 20 and 21) in tile form of symmetric averaging functions related to the limiter

as,

The van Albada averaging flmction is,

M = (pq+ e2)(P+ q)
p2 + q2 + 2_2

where the small parameter c varies like c2 _ Ax 3, and serves to reduce tile limiting in smooth

regions.

The averaging function for the ?' limiter, of which tile Minmod (7 = 1) and Superbee

(_ = 2) are special cases, is,

I 0 pq<_O

7p 7lpl_<lq[

M(p,q) = q if IPl-<lql-< 71Pl

p Iql-<lpl-< 71q[

7q 7]ql<-lpl

(31)

Timestep

Both schemes are formulated either as Gauss-Seidel time-relaxation or forward Euler

time-evolution algorithms.

The nodal ul)dates for the discrete system can be formed as a sum of contributions from

all nodes.

i =

j jCi

For positivity 17 each of the coefficients in Eqn. 32 must be non-negative.

Advective Timestep restriction

In the FV context the nodal update (Eqn. 32) can be rearranged into the form of Eqn. 3,

Si(u[+_ - u[) = (ci- l)ui+ -- E cj'uj (33)

T T j#i

For the upwind, edge-based algorithm considered here, each @cj will be related to a positive-

definite coefficient equal to zero for outflowing faces and related to the wavespeed for in-

flowing faces, yielding the restriction r _> 0 on the timestep. The remaining term can be



expressed,

S'(c,- 1)= - (34)
T

k abou_ i

where the Ck coefficients are also positive-definite, either zero for inflowing faces or related

to the wavespeed for outflowing faces. Rearranging and imposing the positivity constraint,

Ci :> O, yields tile timestep restriction,

1 - Ck = Ci -_'"0 (35)
k about i

&
r < _k .boo_ick (36)

For FS, tile nodal updates are assembled from Eqi_. 24 as,

sa(_'+* - u_)= _ c,(, j - _,) (37)
7" i

j¢i

In this case the cj coefficients are formed as contributions from the fluctuations in the

triangles to both tile left and the right of mesh edge _. The positivity restriction on r is

found to have a similar form as for finite volume (Eqn. 36),

&

r _<_2j+_cj (as)

Local time-stepping based on positivity is shown t_ yield stable, yet non-converging, so-

lutions in some second-order cases (see Results section). Robust convergence is obtained by

using the first-order o's in Eqns. 36 and 38, even for se(ond-order-accurate spatial discretiza-

tions. This is equivalent to the common practice of using a first-order Jacobian discretization

in an time-implicit scheme.

Diffusive Timestep Restriction

Unfortunately, tile finite element formulation for t_e diffusive terms (Eqn. 29) cannot be

guaranteed to preserve local positivity on obtuse triangles (see Barth_). Considering only

the contributions from the current node, the coefficient for the diffusion term can be written,

,(1=u, & _, i-_] (39)

The appropriate edge length is tile side of tile elem, mt opposite the current node. The

resulting timestep restriction is,

&
r < (40)

-- ET _,g2

In a similar manner the timestep restriction from Eqn 10 is,

Si
7-<

3uAF 2
-- ET 4f_

(41)



Results

Linear Advection

The linear advection equation is obtained froin Eqn. 1 by setting v = 0 and /_ = _tt,

yielding,

'u, + V. (Au) = 0 (42)

A divergence-less advection velocity is considered, such that V-_ = 0. Equation 42 can then

be written,

'at + ._- Vu = 0 (43)

Uniform Advection

Uniform advection of the Heavyside function at -45 degrees, ,_ = (1,-1), on a cut-

cartesian mesh is shown for first-order FS, second-order FS, and second-order FV in Figs. 2 4,

respectively. The mesh is shown as the dashed 1)ackground, and equally-spaced contours vary

on [0,1], the minimum and maximum solution values. Tile spread of the contour lines with

spatial evolution is indicative of the amount of dissipation introduced into the solution by

the discretization of the convective terms.

Second-order FS is seen to be greatly superior to first-order, as expected, reproducing the

exact sohltion in this case with no introduced dissipation. Also, FS represents a significant

reduction in numerical diffusion versus the corresponding FV scheme, with both results

employing the Minmod limiter.

However, the "zero cross-diffusion" results of Fig. 3 with FS are misleading. In Fig. 5

the advection velocity has been rotated counter clockwise by 90 degrees on the same grid.

Clearly, the artificial dissipation introduced by the FS scheme has been increased.

The corresponding FV solution is shown in Fig. 6. While the change in contour spreading

for the FV scheme between Figs. 4 and 6 is less dramatic than the change in spreading for

the FS scheme in Figs. 3 and 5, the FS results still exhibit less diffusion than the FV results,

comparing Figs. 5 and 6.

Employing the compressive Sut)erbee limiter with the FS scheme yields the results of

Fig. 7. In this case the discontinuity is confined to a 2-3 cell stencil, and does not grow in

space. Applying the Superbee limiter to FV cannot eliminate all artificial dissipation for

this case, as is possible with FS. The FV results (not shown) corresponding to Fig. 7 spread

the discontinuity over four (:ells by the outflow boundary, with a continually broadening

trend.

However, while it is possible to use the Superbee limiter with FS for this case, compressive

limiters can be unstable on different grid orientations. For example, no degree of compression

is stable for the case of Fig. 3. This potential for instability is related to global positivity,

as discussed by Sidilkover and Roe. 3

The effect of using a general unstructured grid is investigated in Figs. 8 and 9. The

unstructured grid in this case was generated using VGRID. ls'19 The FS solution exhibits

less dissipation, but is not as smooth as the FV solution. While the FS scheme preserves

contact discontinuities over larger spatial ranges than the FV scheme, FS does not appear

to degenerate gracefully with regard to extreme coarsening of the unstructured mesh for

this test case. This behavior could have negative implications for applications employing

multigrid convergence acceleration.



Circular Advection

Circular advection is achieved by setting _ = (y, - c). A decaying sine-wave input profile
is used,

u(x, 0) = (el sin 7_x) 2

Results for tile two schemes, using the Minmod limiter, are presented on the worse-case

cut-cartesian mesh in Figs. 10 and ll. Again, the FS results are considerably less diffusive
than tile FV solution.

Tile circular-adveetion problem is also applied on an unstructured mesh. The input

profile for this case consists of both a top-hat function and a decaying sine wave, allowing

comparisons between tim schemes for both sharp discontinuities and smooth gradients. The

input profile is,

{ (c 2xsin(27rx)) 2 -0.5_<x<0

u(x, 0) = 0 -0.6 < x < -0.5
0.4 -0.8 _< x < -0.6

0 -1 _< x < -0.8

Results for this case are displayed in Fig. 12 for FS and Fig. 13 for FV, both using the

Minmod limiter. FS performs significantly better at preserving the top-hat distribution.

FS also does a better job of maintaining the minimum and maximum values of the sine

distribution, though both schemes do well on the smooth gradient portion of the sine wave.

Non-linear Advection

The non-linear adveetion equation is obtained fror:l Eqn. 1 by setting F = (_, u) with

u = 0. In non-conservative form the equation is written,

ttt + _t_tx + uy =0

A coalescing shock problem is considered, with an anti-syinmetric input profile,

= = 0

u(x, 0) = -2x- 1 on x= (-1,0)

The exact solution to this problem contains symmetric expansion fans on the sides and a
1 1

compression fan at the inflow that coalesces into a vertical shock at (x, y) = (-i, 5)"

The first mesh is cut-cartesian containing 26 × 2{; nodes. The FS and FV solutions,

both using the Mininod limiter, are presented in Figs. 14 and 15. Both algorithms exhibit

the same grid dependence on the amount of artificial dissipation as seen before, with the

left-half solutions having more diffnsion than the righ; halves, due to the grid orientation.

Both inethods perform the same in the compression-fro region, coalescing into a shock to

within the accuracy of the input-profile diseretization.

The shock is more sharply defined by FS than by FV. Figure 14 has the correct shock

speed, with nearly the entire gradient captured in on,_ cell thickness. In contrast, Fig. 15

10



showsa slightly incorrect shockspeedwhen using FV, as tile shockprogressesto tile left
beyond the coalescencepoint, eventhough the discretization is conservative.Tile incorrect
shockspeedresults from a non-symmetricdistribution of the dependentvariable to the left
and right of the shock,causedt)y tile excessiveartificial diffusion generatedon the grid-
misaligned (left-hand) side.

Contoursof the absolutevalueof the error arepresentedin Figs. 16and 17. Errors from
both computed solutionsshowa lack of symmetry, again reflectingthe grid dependenceof
the artificial diffusion terms. The error levels from FS are lessthan from FV. The shock

curvature in the FV solution at the coalescing point is clearly visible in Fig. 17, resulting in

significant downstream errors in the shock location as compared with the FS errors.

This problem is repeated on a 25 x 25 mesh with symmetric diagonal cuts, favorably

aligned with the advection directions. The FS and FV solutions, Figs. 18 and 19, are in

good agreement. Plots of the absolute error contours, Figs. 20 and 21, show FS to be a

little more accurate than FV for this case.

The final mesh for this case is a truly unstructured triangulation containing 847 nodes

and 1617 cells. The nodes are clustered to the outflow boundary, with a bias towards the

left-hand side. The FS solution is presented in Fig. 22, showing very accurate and crisp

shock resolution and good symmetry in the solution contours despite the mesh-clustering

bias. In contrast, the FV solution in Fig. 23 has a more-diffuse shock and again an incorrect
The FV solution is alsoshock speed, with the outflow shock offset to the left, of z = -_.

somewhat less symmetric than the FS solution.

Linear Diffusion

Choosing F = 0 the heat-conduction equation is obtained from Eqn. 1,

ut = V. (vVu)

The test problem, a steady-state boundary value problem on a unit square, is taken from

Tomaich. 4 The Dirichlet boundary values are,

u(-1, y)=0, u(O,y) = sin(Try)

u(z,O) =0, u(z, 1) = -sin(rr.r)

The analytical solution on x = [-1, 0], y = [0, 11 is,

1

u(x, y) - sinh 7r [sinh(rr(x + 1)) sin(roy) + sinh(rry)sin(rr(x + 1))]

Both diffusion discretizations, Eqns. 10 and 29, are compared on a 438-node unstructured

mesh. Figures 24 and 25 plot the absolute value of the error in the converged solutions

using Eqns. 10 and 29, respectively. A carpet plot of the solution, using the finite element

formulation, is presented in Fig. 26.

The finite element treatment is clearly more accurate, and is used to discretize the dif-

fusion terms for both FV and FS in the following section. The average-gradient results in

Fig. 24 appear to exhibit a decoupling mode, similar to odd/even deconpling for structured

meshes.
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Linear Advection-Diffusion

The final test case is a linear advection-diffusion problem of Smith and Hutton. 2° The

flux function is F = Au, with,

A: (2y(1- x2), -2x(1 - y2))

The streamlines for this problem, while not truly circular, are similar in orientation to the

circular advection problem. Tile inflow profile is,

u(x,0)=l+tanh(20x+ 10)

The diffusion coefficient is chosen to be a constant, u = 10 -3. The domain is the unit square

in the second quadrant. No closed-form solution is known to the authors for this problem.

A sequence of five unstructured meshes is considered. The meshes have no preferred

clustering or stretching and have nominal node-spacings of 0.1, 0.05, 0.025, 0.0125, and

0.00625, labeled as Meshes A-E, respectively. The number of nodes for each mesh, along

with tile solution times for both FS and FV on a 195 MHz SGI R10000 CPU are listed in
Table 1.

L2-norms of the artificial and physical viscosities computed using both FS and FV are

presented for each mesh in Table 2. Notice that the norm of the artificial dissipation

for both FV and FS drops lower than the norm of the physical dissipation on Meshes D

and E. Since tile algorithms select only the larger of the physical or artificial dissipation

(Eqn. 30), Table 2 suggests both schemes are grid resolved on Mesh D. However, the norm

of the physical dissipation is smaller for FV than FS on each mesh A D. The physical

viscosity is driven by the solution curvature, suggesting FS maintains the solution profile

sharper than FV on the coarser meshes. A comparison of outflow profiles will soon veri_
this interpretation.

Further evidence of a grid-resolved FS solution is seen in Figs. 27 and 28. The FS

solution on Mesh E at tile outflow boundary is presel ted along with tile inflow profile and

the corresponding pure-advection (v = 0) FS solution in Fig. 27. Tile pure-advection

solution is seen to replicate the inflow profile, with a clear separation from the diffused,

u = 1() -:_, solution. Plotting only the FS results with respect to grid refinement, Fig. 28

shows a convergence of the outflow profile by Mesh C for FS.

The accuracy of FS and FV are compared in Fig. 2.(t, where the outflow solutions from FS

and FV are plotted tbr Meshes C and E. Taking the _xid-converged FS Mesh-E solution to

be the "truth" solution, it is clear that FS reaches th( grid converged solution on a coarser
mesh than FV.

Computational efficiencies of the two algorithms a_e compared in Fig. 30, where the L2-

norm of the residual is plotted versus CPU time for the fine-mesh FS and FV solutions, along

with the FS convergence history on Mesh D. The Me_h-E FS solution converges in 760 sec.

The corresponding FV solution takes 2.5 times longer than FS, due, in part, to the need

to reconstruct gradient information at each node with FV for second-order spatial accuracy.

However, considering the solution time to reach a given accuracy, it is more reasonable to

compare the FS solution time on Mesh D to tile fines ;-mesh FV solution. The FS Mesh-D

solution took only 64 sec, a factor of 29 times less than FV on Mesh E, and still shows better

accuracy than tlle fine-mesh FV solution.
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An even greater speedupis seenwith FS in conjunction with the van Albada limiter,
wherenow the Mesh-Bsolution over-plots the curve from tile finest grid, shownin Fig. 31.
The correspondingFV result using the van Albada limiter on Mesh B is included, and
clearly falls short of tile FSaccuracy.The FV casewasrepeatedwith the highly-compressive
Superbeelimiter with little improvementin accuracy.The solution time for FS on MeshB
is about one second,yielding a speedupfactor of 2 3 ordersof magnitude over FV.

The final set of resultsaddressesconvergenceissueswhile pushing the positivity limits.
Figure 32 comparestwo convergencehistories for the second-orderFS on MeshB. The
non-converging,though stable,convergencehistory is the result of using strict positivity ar-
gumentsto setthe timestep (Eqn. 38). The resulting solution is boundedand approximately
correctbut oscillator3.'.Limiter "ringing" is consideredto be a contrit)utor to this behavior,
and the higher-orderdiscretization for the implicit matrix could be reducing the diagonal
dominance,and hencestability, of the Gauss-Siedeliteration.

Full convergenceis achievedby using first-order positivity coefficients,which are not
dependenton the limiters. The resulting local timestepswill not be as largeastrue second-
order positivity would allow, but appear to be more robust.

Summary of Results

Fluctuation splitting and finite volume schemes are compared in detail as applied to scalar

advection, diffusion, and advection-diffusion problems. The fluctuation splitting scheme is

seen to introduce less artificial dissipation while treating advection terms, allowing for more

accurate resolution of weakly dissipative advection-diffusion problems. The ability to resolve

solutions to these problems on coarser meshes makes the fluctuation splitting scheme the

preferred choice over finite volume.

Linear advection test problems are utilized to investigate tile dependence of artificial

diffusion production on grid orientation. Both fluctuation splitting and finite volume are

shown to exhit)it grid dependencies, but with fluctuation splitting producing less artificial

dissipation on all grids considered.

A non-linear coalescing shock problein further explores grid dependencies as cases are

constructed that result in incorrect shock speeds for finite volume. Fluctuation splitting

shows correct shock speeds for all grids and provides tighter shock capturing than finite

volume.

An adveetion-diffusion problem with small physical dissipation (diffusion coefficient of

10 -a) is considered where the reduction in artificial dissipation with fluctuation splitting

results in a significant accuracy improvement over finite volume. Convergence times are

compared, showing a speedup of 2.5 for fluctuation splitting over finite volume on identical

grids, using a point Gauss-Seidel relaxation. However, a grid convergence study shows

fluctuation splitting has better resolution of the solution on a coarser mesh than finite volume

does on finer meshes, resulting is a speedup of 29 for fluctuation splitting over finite volmne.

Based upon these significantly reduced solution times for solving model problems, as com-

pared to the current state-of-the-art finite volume method, fluctuation splitting is considered

a worthwhile scheme to pursue for modeling fluid dynamic problems.
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Table 1 Grids and solution times for advection-diffusion problem.

CPU seconds

Mesh Nodes FS FV

A 134 < 1 < 1

B 495 1 1

C 1,928 5 8

D 7,529 64 145

E 28,915 760 1880
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Table 2 L2-norms (×105) of artificial and physical viscosities for advection-diffusion

problem.

FS FV

I1¢11_ I1¢,,11,,Mesh 11_'112II_ll_
(art.) (phys.) (art,.) (phys.)

1274 215 A 1918 190

597 265 B 640 176

192 161 C 144 119

54 76 D 46 66

13 36 E 18 36
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Figure 2 First-order fluctuation splitting, uniform advection.
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Figure 3 Second-order fluctuation splitting, uniform advection.
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Figure 9 Finite volume on unstructured mesh.
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Figure 19 Finite volume, Burgers equation, symmetric mesh.
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Figure 20 Fluctuation splitting, Burgers equation, absolute error.
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38



1-1 , f . , -0.5 ..... , _ . , 01

. : i .'-i 'i:'' :i',i i', Contour

• ,": ' i" _" '::_' _ .' " ,'," :, spacing:
, • =- " : " _ , -I-I

i i 0.1 increments

0.5 _: : • ' _ ' i 0.5

U=O o o U=O

-0.5
U = -2x -1 X
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